Molecular and functional identification of a mitochondrial ryanodine receptor in neurons.
نویسندگان
چکیده
Mitochondrial Ca(2+) controls numerous cell functions, such as energy metabolism, reactive oxygen species generation, spatiotemporal dynamics of Ca(2+) signaling, cell growth and death in various cell types including neurons. Mitochondrial Ca(2+) accumulation is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU), but recent reports also indicate that mitochondrial Ca(2+)-influx mechanisms are regulated not only by MCU, but also by multiple channels/transporters. We previously reported that ryanodine receptor (RyR), which is a one of the main Ca(2+)-release channels at endoplasmic/sarcoplasmic reticulum (SR/ER) in excitable cells, is expressed at the mitochondrial inner membrane (IMM) and serves as a part of the Ca(2+) uptake mechanism in cardiomyocytes. Although RyR is also expressed in neuronal cells and works as a Ca(2+)-release channel at ER, it has not been well investigated whether neuronal mitochondria possess RyR and, if so, whether this mitochondrial RyR has physiological functions in neuronal cells. Here we show that neuronal mitochondria express RyR at IMM and accumulate Ca(2+) through this channel in response to cytosolic Ca(2+) elevation, which is similar to what we observed in another excitable cell-type, cardiomyocytes. In addition, the RyR blockers dantrolene or ryanodine significantly inhibits mitochondrial Ca(2+) uptake in permeabilized striatal neurons. Taken together, we identify RyR as an additional mitochondrial Ca(2+) uptake mechanism in response to the elevation of [Ca(2+)]c in neurons, suggesting that this channel may play a critical role in mitochondrial Ca(2+)-mediated functions such as energy metabolism.
منابع مشابه
Supporting Online Material for: Molecular and functional identification of a mitochondrial ryanodine receptor in neurons
متن کامل
Ryanodine receptor-mediated Ca2+ release underlies iron-induced mitochondrial fission and stimulates mitochondrial Ca2+ uptake in primary hippocampal neurons
Mounting evidence indicates that iron accumulation impairs brain function. We have reported previously that addition of sub-lethal concentrations of iron to primary hippocampal neurons produces Ca(2) (+) signals and promotes cytoplasmic generation of reactive oxygen species. These Ca(2) (+) signals, which emerge within seconds after iron addition, arise mostly from Ca(2) (+) release through the...
متن کاملShielding Effect of Ryanodine Receptor Modulator in Rat Model of Autism
Introduction: A neurodevelopmental disorder, autism typically identified with three primary behavioral consequences, such as social impairment, communication problems and limited or stereotypical behavior. Because of its co-morbidity and lack of therapeutic options, autism is a global economic burden. A short chain of fatty acid, propionic acid formed biologically by gut microbiome. Propionic a...
متن کاملبررسی اثر مهار گیرنده رایانیدینی(RYR) بر فعالیت پیسمیکری
Background & Aim: The role of ryanodine receptor(RYR) on pacemaker activity of heart cells is controversial. Some investigators have suggested that it is obligatory, while others believe it is partial and not obligatory. The principle aim of this study was once more to characterize the role of ryanodine receptor(RyR) on the pacemaker activity of the sinoatrial node(SAN) and the atrioventric...
متن کاملNeural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators
Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience letters
دوره 575 شماره
صفحات -
تاریخ انتشار 2014